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ABSTRACT: A novel model based on a radial basis function neural network (RBF NN), chaos theory, self-adaptive particle swarm

optimization (PSO), and a clustering method is proposed to predict the gas solubility in polymers; this model is hereafter called

CSPSO-C RBF NN. To develop the CSPSO-C RBF NN, the conventional PSO was modified with chaos theory and a self-

adaptive inertia weight factor to overcome its premature convergence problem. The classical k-means clustering method was

used to tune the hidden centers and radial basis function spreads, and the modified PSO algorithm was used to optimize the

RBF NN connection weights. Then, the CSPSO-C RBF NN was used to investigate the solubility of N2 in polystyrene (PS) and

CO2 in PS, polypropylene, poly(butylene succinate), and poly(butylene succinate-co-adipate). The results obtained in this study

indicate that the CSPSO-C RBF NN was an effective method for predicting the gas solubility in polymers. In addition, compared

with conventional RBF NN and PSO neural network, the CSPSO-C RBF NN showed better performance. The values of the aver-

age relative deviation, squared correlation coefficient, and standard deviation were 0.1282, 0.9970, and 0.0115, respectively. The

statistical data demonstrated that the CSPSO-C RBF NN had excellent prediction capabilities with a high accuracy and a good

correlation between the predicted values and the experimental data. VC 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 3825–3832,

2013
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INTRODUCTION

Over the past 10 years, polymers have become an important

part of daily life. In view of their importance in various applica-

tions, many researchers have focused considerable attention on

the gas solubility of polymers.1,2 The solubility is one of the

most important physicochemical properties of polymeric com-

pounds; it determines the compatibility of blending systems.

The solubility data of various gases in polymers provide useful

criteria for determining the requisite processing conditions,

which are mostly collected from experimental and prediction

data.3–5 Unfortunately, the solubility data of gases in polymers

within a wide range of pressures and temperatures are rare

because some experimental studies are difficult to implement

under many restricted conditions. In addition, experimental

studies are very expensive and time-consuming.3,6 Therefore,

many researchers have tried to predict the solubility by theoreti-

cal methods, such as perturbed hard-chain theory, lattice–fluid

theories, and cubic equations of state.3,7,8 The theoretical model

of the solubility data is as crucial as the experimental measure-

ments for the understanding of the processes; incidentally, theo-

retical calculation is inexpensive and a timesaver compared to

experiments. On the other hand, the most conventional predic-

tion methods cannot predict the solubility of highly polar sub-

stances correctly and have some shortcomings, including a large

inaccuracy.1,7,9

As far as the solubility of gases in polymers within a wide

range of temperatures and pressures is concerned, it is affected

by many factors, including the temperature, pressure, and

interactions with groups of macromolecular chains. Because of

the nonlinear mapping in these factors, most conventional

methods for the prediction of gas solubility in polymers are

often limited, whereas artificial neural networks (ANNs) have
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found more popularity for the prediction of various thermo-

dynamic properties.8,10–12 Because of the nonlinear nature of

the solubility of gases in polymers,7,13–16 the ANN method

could be considered an alternative research method to the sol-

ubility model.8,17 For this purpose, many types of ANN model

have been proposed. Bakhbakhi7 and Lashkarbolooki et al.8

presented a comparison between ANNs and equations of state

for solubility prediction and demonstrated that the ANN

method was a powerful approach with better accuracy.

Recently, radial basis function neural networks (RBF NNs)

have received considerable attention because of their potential

to approximate nonlinear behavior. Li and coworkers15,18and

Huang et al.19 presented RBF NNs for melting index predic-

tion. Khajeh and Modarress20 proposed an adaptive neuro-

fuzzy inference system (ANFIS) and RBF NN for the solubility

prediction of gases in polystyrene (PS) and indicated that the

ANFIS had better accuracy. In other words, RBF NNs without

parameter optimization cannot achieve the desired perform-

ance. Therefore, a limitation in the RBF NN is that one has to

set the controlling parameter beforehand. If the controlling

parameter is not set appropriately, the performance of the pre-

diction results will not be satisfactory.

Therefore, to improve the performance of the RBF NN, an

optimization of the RBF NN parameters is necessary.

Researchers have discovered that many evolutionary algo-

rithms, such as the genetic algorithm (GA),21,22 simulated

annealing algorithm (SA),23 ant colony algorithm,18 and parti-

cle swarm optimization (PSO) algorithm,24–27 can be used for

this optimization. The PSO algorithm is a global and

advanced algorithm with a strong ability to search global opti-

mum values. Compared with the GA and SA, the most impor-

tant advantages of the PSO algorithm are that the PSO

algorithm has few parameters to adjust and is easy to imple-

ment.28 Recently, researchers have developed lots of neural

network models based on the PSO algorithm and have dem-

onstrated that the PSO is a powerful approach for ANNs.29,30

Although the PSO algorithm shows significant performance,

the conventional PSO algorithm suffers from a premature

convergence problem. Although the mentioned previously

studies have achieved a high level of solubility prediction

accuracy, a greater performance of the prediction model is

still the first-line goal in the academic and industrial

communities.

As motivated and inspired by the aforementioned problems, the

aim is to overcome these problems and develop an effective and

accurate prediction method for gas solubility in polymers. In

this study, a novel model based on chaos theory, a self-adaptive

PSO algorithm, a clustering method, and RBF NN is proposed;

hereafter, this model is called the CSPSO-C RBF NN. In the

CSPSO-C RBF NN, the traditional PSO algorithm was modified

with chaos theory and a self-adaptive inertia weight factor (x)

to overcome the premature convergence problem. Then, the

modified PSO algorithm was used to optimize the RBF NN

connection weights, and the clustering method (k-means) was

used to tune the hidden centers and radial basis function

spreads. With the CSPSO-C RBF NN, the solubility of gases in

polymers was investigated in a wide range of temperature and

pressure. Comparison among different neural networks was car-

ried out in detail to reveal that our proposed CSPSO-C RBF

NN outperformed the RBF NN, particle swarm optimization

neural network (PSO NN), and ANFIS model reported in

related literature.20

THEORY

RBF NN

The RBF NN, as a typical feed-forward network, has been found

to be very beneficial to many engineering problems. It consists

of three layers: the input layer, hidden layer, and output layer.

In this study, the activation function ([f(x)]), used as a

Gaussian type, was as follows:

f xð Þ5exp 2
xi2cj

rj

� �� �

where xi is the input vector and cj and rj are the center and

spread of the ith node in the hidden layer, respectively. The out-

put [O(x)] is given by

O xð Þ5
Xn

i51

wmkm

where n is the number of clusters of the network, wm is the

connection weight, and km is the output of the hidden layer.

The learning procedure of the RBF NN mainly consists of three

parts: the connection weights, the hidden centers, and the radial

basis function spreads. In this study, the connection weights

were optimized by the modified PSO algorithm, called the

chaotic self-adaptive PSO algorithm, whereas the hidden centers

and radial basis function spreads were tuned by the classical

k-means clustering method.

k-Means Clustering Method

The selection of the hidden centers and the widths was of great

significance to the performance of the RBF NN. In this study,

the classical k-means method was used to tune the hidden cen-

ters and radial basis function spreads of the RBF NN. Its imple-

mentation was performed as follows:

Step 1: Initialization: We initialized the radial basis function

centers to the first training data.

Step 2: Clustering: All of the input data were grouped in different

clusters or function centers. The result was that each input

datum belonged to a cluster. The clustering formula is as follows:

����xm2cj�

����5 j
min
����xm2cj

����
where xi is the input data and cj is the function center of cluster j.

Step 3: Updating: For each cj, the function center was updated

as follows:

cj5
1

mj

X
x

i
2j

xi

where mj is the number of data of cluster j.

Step 4: We repeated steps 2 and 3 until no more changes

occurred in any clusters.
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Chaotic Self-Adaptive PSO Algorithm

The PSO algorithm is an evolutionary intelligent algorithm,

in contrast to the GA and SA; the most important advan-

tages of the PSO algorithm, including its easy implementa-

tion and high performance, make it widely accessible.24,26 In

the PSO algorithm, the population is called a swarm, and its

individuals are called particles. When, in an n-dimensional

search space, the total number of particles is assumed to be

m, the swarm is denoted as x 5 (x1, x2, …, xm)T, the posi-

tion of the ith particle is denoted as xi 5 (xi,1, xi,2, …, xi,n)T,

the velocity of the ith particle is expressed as vector

vi 5 (vi,1, vi,2, …, vi,n)T, the best position of the ith particle

is pi 5 (pi,1, pi,2, …, pi,n)T, and the best position of the

neighbor particles is pg 5 (pg,1, pg,2, …, pg,n)T In the conven-

tional PSO algorithm, the position and velocity are updated

as follows:

Vk11
i;d 5xVk

i;d1C1 Pk
i;d2Xk

i;d

� �
1C2 Pk

g;d2Xk
i;d

� �
(1)

Xk11
i;d 5Xk

i;d1Vk11
i;d (2)

where i 5 1, …, m; xk
i;d

and vk
i;d denote the position and velocity

of ith particle at d-dimensional and the kth iteration, respec-

tively; c1 and c2 are the acceleration coefficients; pk
i;d represents

the best position of the ith particle in d dimensions; and pk
g ;d

denotes the global best position.

Although conventional PSO algorithm shows significant

performance, it has a potentially dangerous property of

being premature.31 In this study, the traditional PSO algo-

rithm was modified with chaos theory and self-adaptive x
with the purpose of avoiding the premature convergence

problem and accelerating the converging speed. The self-

adaptive x was proposed to obtain a balance between the

exploration and exploitation, whereas chaos theory was

used to generate chaotic sequences, which were used to

adapt the acceleration coefficients. In eq. (1), x affects the

performance of the algorithm. A larger x facilitates global

exploration, whereas a smaller one facilitates local exploita-

tion.32,33 To enhance the performance of the PSO algo-

rithm, in this study, the global best fitness and the average

of the particles’ local best fitness were used to determine

x in each iteration, and a self-adaptive x was defined as

follows:31–36

x5xmax 2PgbestðkÞ=PlbestaveðkÞ2 xmax 2xminð Þ3k=kmax

x was used to monitor the search situation and adapt the

x value based on three feedback parameters, k, Pgbest(k), and

Plbestave. Here, Pgbest(k) denotes the global best fitness at the kth

iteration, Plbestave denotes the average local best fitness, kmax is

the maximum iteration, k denotes the current iteration, and

xmax and xmin are the maximum and minimum inertial

weights, respectively.

c1 and c2, shown in eq. (1), were generated by a logistic map.

The logistic map is a polynomial mapping (equivalently, a

recurrence relation) of degree 2, often cited as an archetypal

example of how complex chaotic behavior can arise from very

simple nonlinear dynamical equations. Mathematically, the

logistic map is written as follows:

cn1154cn 12cnð Þ

where cn is a number between zero and one. The logistic map

was used to tune c1 and c2.

The modified PSO algorithm, called a chaotic self-adaptive PSO

algorithm, was used to optimize the RBF NN connection

weights. The RBF NN trained by the chaotic self-adaptive PSO

and clustering method, called the CSPSO-C RBF NN, was used

to investigate the solubility of gases in polymers within a wide

range of temperatures and pressures.

EXPERIMENTAL DATA AND ARCHITECTURE

The experimental data used in this study were obtained from

the literature. After the comprehensive evaluation of the experi-

mental data, when we removed the redundant and invalid data

points, a database containing 412 data points was finally estab-

lished for the CSPSO-C RBF NN model. The gases were CO2

and N2, and the polymers were poly(butylene succinate) (PBS),

poly(butylene succinate-co-adipate) (PBSA), PS, and polypro-

pylene (PP). Table I shows the sources of statistical data used in

this study.

The database was divided into five groups with different gases

and polymers; these groups were N2 in PS and CO2 in PBS,

PBSA, PS, and PP. Then, each group was randomly divided into

three subsets including training, validation, and testing sets. To

verify the network generalization, 292 data points (ca. 70%)

Table I. Experimental Data Used in This Study

Gas Polymer Temperature (K) Pressure (MPa) Solubility (g/g) Data points References

CO2 PBS 323.15–453.15 1.025–20.144 0.0088–0.0176 69 37,38

CO2 PBSA 323.15–453.15 1.098–20.127 0.0118–0.1741 58 37,38

CO2 PP 313.20–483.70 2.930–24.910 0.0205–0.2617 92 4,38–40

CO2 PS 170.00–473.15 2.068–44.410 0.0028–0.1606 104 5,6,38,41,42

N2 PS 170.00–453.20 2.989–69.470 0.0011–0.0260 89 4–6,42

Total 170.00–483.70 1.025–69.470 0.0011–0.2617 412
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were used to train, validate, and give the test set 60 data points

(ca. 15%) each.

The number of neurons in the input and output layers are

defined by the system’s properties. Therefore, the CSPSO-C RBF

NN with one hidden layer, two inputs (temperature and pres-

sure), and one output (solubility of gas in the polymer) is

designed. The number of neurons in the hidden layer needed to

be optimized. In this study, a heuristic was proposed with a

previously prepared procedure; 13 CSPSO-C RBF NN models

were generated with the assumption that the number of neu-

rons in the hidden layer varied from 3 to 15. Table I shows the

average relative deviation (ARD), standard deviation (SD),

squared correlation coefficient (R2), and best fitness calculated

for the different network configurations. The network with the

lowest ARD and SD and highest R2 was selected. According to

Table II, the hidden layer with nine neurons was selected for

the CSPSO-C RBF NN.

In this study, the CSPSO-C RBF NN was designed for the solu-

bility prediction of gases in polymers. The predictability was

evaluated by the calculation of ARD, SD, and R2. ARD and SD

were defined as follows:

Figure 1. Predicted solubility of CO2 in PS by the CSPSO-C RBF NN ver-

sus the experimental data. [Color figure can be viewed in the online issue,

which is available at www.interscience.wiley.com.]

Figure 2. Predicted solubility of CO2 in PP by the CSPSO-C RBF NN ver-

sus the experimental data. [Color figure can be viewed in the online issue,

which is available at www.interscience.wiley.com.]

Figure 3. Predicted solubility of N2 in PS by the CSPSO-C RBF NN ver-

sus the experimental data. [Color figure can be viewed in the online issue,

which is available at www.interscience.wiley.com.]

Table II. Topology Studies of the Optimal ANN Configuration

Hidden
neuron ARD SD R2 Best fitness

3 0.3222 0.0601 0.9694 7.31 3 104

4 0.2853 0.0578 0.9698 2.14 3 104

5 0.2157 0.0489 0.9737 1.42 3 104

6 0.1715 0.0230 0.9772 1.38 3 104

7 0.1726 0.0223 0.9845 9.58 3 105

8 0.1312 0.0118 0.9925 9.80 3 106

9 0.1282 0.0115 0.9970 5.96 3 107

10 0.1425 0.0210 0.9864 9.75 3 105

11 0.1846 0.0347 0.9738 9.42 3 105

12 0.1799 0.0321 0.9739 9.23 3 105

13 0.2018 0.0523 0.9701 2.44 3 104

14 0.3241 0.0628 0.9697 9.18 3 105

15 0.4786 0.0662 0.9688 1.75 3 104
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ARD5
1

N

XN

i51

jPr e ið Þ2Exp ið Þj
Exp ið Þ

SD5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i51

xi2xoð Þ2
vuut

where N is the number of data points, Pre(i) is the predicted

value of the model, Exp(i) is the experimental value, and xo is

the average of N data points.

RESULTS AND DISCUSSION

An RBF NN combined with chaos theory, self-adaptive PSO

algorithm, and clustering method, called simply the CSPSO-

C RBF NN, was applied to predict the solubility of gases in

polymers as a sample test in this study. The best network

architecture was 2–9–1 (2 input units, 9 neurons in the hid-

den layer, and 1 output neuron). The CSPSO-C RBF NN

was used to investigate the solubility of N2 in PS and that

of CO2 in PBS, PBSA, PS, and PP. In Figures 1–5, the

Figure 5. Predicted solubility of CO2 in PBSA by the CSPSO-C RBF NN

versus the experimental data. [Color figure can be viewed in the online

issue, which is available at www.interscience.wiley.com.]

Figure 6. Comparison between the experiment and prediction in the test-

ing set. [Color figure can be viewed in the online issue, which is available

at www.interscience.wiley.com.]

Figure 7. Comparison between the experiment and prediction in the test-

ing set. [Color figure can be viewed in the online issue, which is available

at www.interscience.wiley.com.]

Figure 4. Predicted solubility of CO2 in PBS by the CSPSO-C RBF NN

versus the experimental data. [Color figure can be viewed in the online

issue, which is available at www.interscience.wiley.com.]
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prediction of the solubility of N2 in PS and that of CO2 in

PBS, PBSA, PS, and PP are plotted against the experimental

data for the training and validation sets. The training set

learned to fit the parameters, and the validation set was

used to estimate the error rate to tune the model parame-

ters. In these figures, the lines show the ideal modeling in

which the prediction values were equal to the experimental

data, whereas the asterisk and circle indicate the correlations

between the experimental and predicted values in the train-

ing and validation sets, respectively.

As observed in these figures, the output of the CSPSO-C RBF

NN model showed good agreement with the target, no matter

the training set or the validation set. Particularly, for CO2 in PP,

as shown in Figure 2, it showed a better correlation between the

predicted and experimental values, with a close proximity of the

best linear fit to the perfect fit.

In Figures 6 and 7, the prediction of the solubility of N2 in PS

and that of CO2 in PBS, PBSA, PS, and PP are plotted against

the experimental data for the testing sets. As observed in these

figures, the results showed the superiority of the CSPSO-C RBF

NN. They could have also meant that the CSPSO-C RBF NN

model had excellent prediction capability and good correlation

with the experimental data.

In addition, the RBF NN and PSO NN were used as compara-

tive models. The curves of the mean square error versus the

epoch of different models are shown in Figure 8. As shown in

Figure 8, the convergence speed of the proposed CSPSO-C RBF

NN was faster than the others and proved its ability to avoid

the premature convergence problem. In addition, to show that

our proposed method outperformed the RBF NN and PSO NN,

a database containing 50 data points (10 data points in each

group) was also established to compare the different neural net-

works. The correlation between the predicted results and experi-

mental values is illustrated in Figure 9. The simulation

performance was evaluated by the calculation of ARD, SD, and

R2. Table III shows the results for these models. In addition, for

CO2 in PS, the ARD for ANFIS and the RBF NN proposed by

Khajeh and Modarress20 were 0.2543 and 0.6498, respectively,

Figure 9. Predicted gas solubility in the polymers by the CSPSO-C RBF

NN versus the experimental data. [Color figure can be viewed in the

online issue, which is available at www.interscience.wiley.com.]

Table III. Statistical Comparison Results from This Study

RBF NN PSO NN CSPSO-C RBF NN

Compounds ARD R2 SD ARD R2 SD ARD R2 SD

PS/CO2 0.3830 0.9566 0.0647 0.2520 0.9785 0.0413 0.1300 0.9971 0.0113

PP/CO2 0.3378 0.9622 0.0523 0.2274 0.9801 0.0404 0.1107 0.9988 0.0107

PS/N2 0.4012 0.9477 0.0718 0.2960 0.9686 0.0443 0.1370 0.9956 0.0125

PBS/CO2 0.3976 0.9516 0.0721 0.2710 0.9712 0.0422 0.1340 0.9962 0.0121

PBSA/CO2 0.3863 0.9524 0.0612 0.2680 0.9786 0.0410 0.1292 0.9973 0.0111

Average 0.3812 0.9541 0.0644 0.2629 0.9754 0.0418 0.1282 0.9970 0.0115

Figure 8. Curve of the mean square error versus the epoch. [Color figure

can be viewed in the online issue, which is available at

www.interscience.wiley.com.]
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whereas in this study, this value was 0.1282. R2 for the neural

network trained by the unified PSO proposed by Ahmadi24 was

0.99493, whereas in this study, it was 0.9970.

These results indicate that the performance of the CSPSO-C

RBF NN was superior to those of the others. The statistical

results of these models, shown by ARD and SD in Table III,

indicated that the CSPSO-C RBF NN model was more accurate

than the RBF NN and PSO NN models. Obviously, the strong

correlations shown by R2 indicated a satisfactory agreement

between the experimental and predicted data.

In one word, the experiment results indicated that the CSPSO-

C RBF NN model was better, faster, and more accurate and is a

practicable method for the analysis and design of polymer pro-

cess technology. Compared with the existing methods, the

major reason for the superiority of the CSPSO-C RBF NN

model was due to the hybrid training algorithm based on chaos

theory, the self-adaptive PSO algorithm, and the clustering

method. The advanced hybrid algorithm relied on the following

three points with the purpose of avoiding premature conver-

gence and accelerating the converging speed. One is the k-means

method proposed to tune the hidden centers and function

spreads of the RBF NN, one is the self-adaptive x proposed for

the balance between the exploration and exploitation of PSO,

and the other is chaos theory, used to adapt the acceleration

coefficients of the PSO algorithm.

CONCLUSIONS

The prediction of gas solubility in polymers by the ANN model

has become the most vital subject in polymer processing. In

this study, we proposed an RBF NN prediction model trained

by a hybrid algorithm combined with a self-adaptive PSO algo-

rithm, chaos theory, and a clustering method to predict the sol-

ubility of gases in polymers; we aimed to use this to replace

costly and time-consuming measurements in laboratory. In

short, this study indicated that the CSPSO-C RBF NN model

for predicting the solubility of gases in polymers has good

application prospects and is a useful tool for the analysis and

design of polymer processes. In the future studies, we will fol-

low up on this subject and focus on how to apply this method

to solve more realistic problems all the time.
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